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SELF-GUIDING AND STABILITY OF INTENSE 
OPTICAL BEAMS IN GASES UNDERGOING IONIZATION 

I.  Introduction 

The propagation of optical pulses in gases is relevant to a wide range 

1 2 
of applications, such as ultra-broadband optical generators, ' optical 

harmonic generators,3'4 x-ray lasers, and laser-driven accelerators 

For these applications it is necessary that the optical pulse be intense 

and propagate extended distances. In the absence of an optical guiding 

mechanism the propagation distance is limited to approximately a Rayleigh 

(diffraction) length. At sufficiently high power and intensity the 

propagation distance is strongly affected by nonlinear self-focusing and 

ionization (plasma generation). 

An optical beam propagating in a neutral gas is affected by 

diffraction, refraction, nonlinear self-focusing, ionization, and plasma 

defocusing. Self-focusing, for example, is due to the intensity dependent 

part of the refractive index and occurs when the optical power is above the 

nonlinear focusing power.     As the beam focuses, the increased 

intensity results in ionization and plasma formation which tends to defocus 

the optical beam9'17-21, see Fig. 1. A balance between the nonlinear 

focusing and plasma defocusing can result in a self-guided optical beam. 

In this paper the propagation, self-guiding, and stability of two 

types of optical beams are analyzed. The two beams considered are a 

2 2 
fundamental Gaussian beam of the form EQexp(-r /rg + ii|0§x/2 + c.c. and a 

2 2 
higher-order radially-polarized beam of the form EQ(J2r/rg)exp(-r /rg + 

i*)e II  + c.c, where E is the electric field amplitude, rg is the spot 

size and \|> is the phase. The results of this paper include (1) envelope 

equations describing the evolution of the optical beam spot size, which are 

22 23 
derived by using the source-dependent expansion method,  '  (2) the 

critical power for nonlinear self-focusing of the higher-order mode, which 

Manuscript approved June 3, 1996. 



is four times greater than that of the fundamental Gaussian, (3) self- 

guided beam solutions, which result from a balance of nonlinear self- 

focusing and plasma defocusing, (4) the analysis of a new ionization- 

modulation instability, which disrupts self-guided beams, (5) the evolution 

of the optical beam phase velocity, which is less than the speed of light 

for a self-guided beam, and (6) a new configuration of an inverse Cherenkov 

accelerator, which is based on a self-guided, radially-polarized, higher- 

order Gaussian beam. 

One important application of intense optical pulses propagating in 

gases is laser-driven electron accelerators, which are referred to as 

inverse Cherenkov accelerators (ICAs). ~  In the conventional ICA, ~ the 

optical beam driver can consist of either a radially-polarized i) higher- 

order Gaussian mode or ii) a nonideal first-order Bessel mode. Associated 

with these modes is an accelerating axial field peaked along the 

propagation direction (z-axis). In general, the electron acceleration 

distance is limited by either the diffraction distance or the electron 

slippage distance. Since the optical beam in the ICA propagates in gas, 

the phase velocity can be less than the speed of light and controlled by 

varying the gas density. Electron slippage is minimized by matching the 

electron velocity to the phase velocity of the accelerating field. The 

acceleration distance, however, is still limited by the diffraction length. 

For a higher-order Gaussian mode the diffraction length is a Rayleigh 

length which is precisely the slippage distance in vacuum. In this case, 

as far as energy gain is concerned, there is essentially no advantage in 

introducing a gas since the effective acceleration length is limited to 

approximately a Rayleigh length as discussed in Sec. V. For a fixed total 

optical beam power, however, the energy gain in the conventional ICA can be 



significantly increased by using a nonideal Bessel beam, as discussed in 

Appendix D. To further enhance the energy gain, the ICA requires self- 

Q fi—R 
guiding of the optical driver.  Previous studies   of the ICA also 

neglect the intensity dependent effects in the refractive index, i.e., 

nonlinear self-focusing, as well as ionization, i.e., plasma effects. We 

propose and analyze a self-guided ICA configuration that operates at laser 

powers near the nonlinear self-focusing power and at intensities high 

enough to slightly ionize the gas. 

Another possible application of intense optical beams in gases is the 

12 3 4 
generation of ultra-broadband ' or harmonic radiation. '  A short pulse 

optical beam propagating in a nonlinear medium will, among other things, 

undergo self-phase modulation    which results in frequency broadening. 

Since the degree of frequency broadening increases with both propagation 

distance and optical intensity, the self-guiding of a short optical beam 

may be well suited for ultra-broadband radiation generation. A self-guided 

3 4 Gaussian beam may have application to harmonic generation, ' since the 

propagation medium consists mainly of a neutral gas and a very narrow 

plasma column along the axis. The harmonics could be guided by the driving 

optical beam and phase matching may be achieved by introducing a background 

plasma. 

This paper is organized as follows. The propagation model is 

presented in Sec. II, and includes discussions of the wave equation in a 

gas undergoing ionization, the linear and nonlinear polarization, plasma 

generation, the reduced wave equation, photo-ionization, the solution of 

the wave equation using the source dependent expansion method, and the 

resulting equations describing the evolution of the envelope, amplitude, 

and phase of the optical beam. The propagation of a fundamental Gaussian 



beam is examined analytically and numerically in Sec. Ill, including the 

envelope equation, self-guided solutions, and the stability, i.e., the 

ionization-modulation instability. Numerical results on the propagation of 

the fundamental Gaussian beam are also presented in Sec. III. The 

propagation of a higher-order radially-polarized beam is analyzed in Sec. 

IV, including the envelope equation, self-guided solutions, and the 

stability. Numerical results on the propagation of the higher-order 

radially-polarized beam are also presented in Sec. IV. The analysis of a 

self-guided inverse Cherenkov accelerator is presented in Sec. V. 

Attenuation of the optical beam due to electron collisions and ionization 

losses is analyzed in Sec. VI. Section VII contains a discussion and 

summary. This paper also includes three Appendices discussing (A) photo- 

ionization rates, (B) electron collision frequencies, (C) radiative and 

collision losses on accelerated electrons, and (D) inverse Cherenkov 

acceleration with Bessel (axicon) beams. 

II. Propagation Model 

The propagation of intense optical beams in gases is affected by a 

combination of diffraction, refraction, and ionization. The refractive 

index of a gas generally has an intensity dependent part,     n = nQ + 

n„I, where n is the linear refractive index, n9 is the nonlinear 2        o ^ 

refractive index and I is the intensity of the optical beam. Generally, n2 

is positive and results in self-focusing of the optical beam if the power 

is greater than the nonlinear focusing power. The nonlinear focusing 

(critical) power for a fundamental Gaussian beam    is PNG = X /(2nnon2), 

where X is the vacuum wavelength. As the beam self-focuses the peak 

intensity increases resulting in ionization and the generation of a plasma. 



In the region of the plasma the refractive index is n(r) = nQ + n2I - 

7 2 2 1/2 
w(r)/2w, where w = (4nq n /m)   is the plasma frequency, n^ is the 
p p       P P 

plasma density, and » = 2nc/X is the frequency of the optical beam. The 

local decrease in the refractive index due to the plasma tends to defocus 

9 17-21 
the optical beam.       If diffraction, self-focusing due to n2 and 

defocusing due to plasma generation are properly balanced, a self-guided 

optical beam can be formed and propagated over extended distances, i.e., 

9 20 21 
many vacuum Rayleigh lengths. '  ' 

Our propagation model includes a number of assumptions. The short 

pulse optical beam is assumed to be adequately described by a single source 

dependent Laguerre-Gaussian mode, which is a superposition of many vacuum 

Laguerre-Gaussian modes. The model is not valid when the optical power 

greatly exceeds the nonlinear focusing power, since the beam is expected to 

filament into higher-order modes. Ionization is considered in the high 

field limit ~  (Keldysh parameter less than unity) and is modeled by the 

tunneling ionization rate, see Appendix A. The attenuation of the optical 

beam due to ionization and collisional losses is estimated and found to be 

small enough to neglect. The nonlinear polarization field of the gas is 

included to third order.in the optical field whereas the plasma current is 

included to first order. 

A.  Wave Equation in Gas Undergoing Ionization 

The dynamics of optical beams propagating in a gas undergoing 

ionization is governed by the wave equation, 

(v2 - c~232/3t2)E = 4nc~2(32P/3t2 + 3J /3t), (1) 

„2222 
where E is the electric field of the optical beam, \T = v^ + 3 /3z , z is 

the axial propagation direction, P is the polarization field associated 



with the gas and J is the plasma current density associated with the 

ionized gas.  In obtaining Eq. (1) we have neglected a small source term 

proportional to the gradient of the plasma density. 

1.  Linear and Nonlinear Polarization 

The polarization field can arise from a number of processes; these 

include electronic polarization, molecular orientation, electrostriction, 

1 ^—1 f> 
saturated absorption and thermal effects.     In the present paper we 

will be concerned with changing the refractive index on a fast time scale, 

-1 ? 
typically less than 10   sec. On this time scale the electronic 

polarization is the dominant contribution to the nonlinear refractive index 

and is due to the optical field modifying the atomic electronic 

distribution. 

In the simple Lorentz model     of the atom the electrons are assumed 

to consist of a charge distribution oscillating in an effective potential. 

Nonlinearities in the effective potential result in a field dependent 

refractive index for the medium. In the following description of the 

polarization field only isotropic matter having ensemble averaged inversion 

symmetry, i.e., centrosymmetric ensemble averaged effective potentials, 

will be considered. This includes all liquids, gases, amorphous solids as 

well as many crystals. 

The electric polarization field is defined by P = qnnx<}> where q is 

the electronic charge, n is the density of atoms or molecules and xd is 

the displacement of the electronic distribution from equilibrium due to the 

optical field. The polarization field in the classical single resonant 

A     1  •     •      K 13"16 

frequency model is given by 

32P/3t2 + S^P - ßJ(P-P/P2)P + 2T3P/3t = (q2nn/m)E,        (2) 



where 0_ is the characteristic resonant frequency of the electronic 

distribution, Q*   is a constant associated with the nonlinear, i.e., 

nonparabolic, nature of the effective potential, Pn is a normalizing 

polarization field amplitude and T is a damping term. Equation (2) is an 

accurate description for the polarization field when the optical frequency 

is far from the resonant frequencies. Typically, the resonant frequency S^ 

is in the ultra violet regime, S^ » «. The polarization field given by 

Eq. (2) contains dispersion, damping and third order nonlinear effects. 

In the limit where i) dispersive effects are weak (far from resonance, 

2_ » w), ii) damping effects can be neglected (T « w), and iii) the 

nonlinear term in Eq. (2) is small (S2P2/P2 « QjJ), the polarization field 

can be approximated by 

P = X(1)E + X(3)<E-E>E 

= (l/4n)(n2 - 1 + 2non2I)E, (3) 

where X^ = q2n /(mß^) « 1 is the constant linear susceptibility, X^ 

(Q1/2R)
2(X^1^)3/P2 « X^/<E-E> is the constant third order susceptibility 

of the neutral gas, the brackets < > denote a time average, nQ = (1 + 

4nX^)   is the linear refractive index of the neutral gas, n2 = 

(8n2/n2c)X^ is the nonlinear component of the refractive index, I = 

(c/4n)n <E-E> is the intensity and |n„I | « n has been assumed. 

2.  Plasma Generation 

The ionization of the background gas by the optical beam results in 

the generation of plasma electrons. The plasma current density is given by 

J = an v , where n and v are the plasma density and fluid velocity 
~p H  p~p'      p    ~p 



respectively. To lowest order in v , the continuity and fluid velocity 

equations are 

3n /8t + V-(n v ) = S, (*a> 

mn 3v /3t = qnE - mv S, (4b> p ~p      p~   ~p 

where S is the plasma source term proportional to the ionization rate, E is 

the optical electric field, the v x B force and thermal effects are 

neglected in Eq. (4b), and the electrons are assumed to be created with 

zero velocity when ionized. Combining Eqs. (4a,b), and keeping terms to 

, 29-31 
lowest order in v , the plasma current density is given by 

~P' 

2 3J /9t = (wV4n)E, (5) 

where « = (4nq2n /m)1/2 is the electron plasma frequency. The evolution 2  . ,1/2 np/m) 

of the plasma density depends on the photo-ionization rate and is discussed 

later. In obtaining Eq. (5) nonlinear and collisional effects, see 

Appendix B, have been neglected. Ionization and collisional losses are 

analyzed in Sec. VI and found to be small. Nonlinear plasma effects are 

small compared to the nonlinear neutral gas effects which are represented 

by the term n„I in Eq.' (3). The magnitude of nonlinear plasma effects 

compared to nonlinear neutral gas effects is approximately given by the 

11 32 
ratio of the critical power for relativistic focusing '  to the nonlinear 

focusing power and is found to be negligibly small. 

3.  Reduced Wave Equation 

The propagation of the optical beam is described by Eqs. (1), (3) and 

(5) together with the tunneling ionization model discussed in Sec. II.B. 

To proceed with the analysis, it is convenient to transform from the (z,t) 



coordinates to the (£,n.) coordinates, where £ = z - vt and n. = z. For a 

beam propagating in the positive z direction with group velocity v, £ is 

the distance behind the front (£ = 0) of the optical beam and n. is the 

propagation distance. In these new coordinates, the optical field has the 

form 

E = E exp(ik£)/2 + c.c, (6) 

where E(r,6, l,,X\)  is the complex amplitude and is a slowly varying function 

of £ and T), k = w/v, w = 2nc/X is the optical frequency, X is the vacuum 

wavelength, and c.c. denotes the complex conjugate. In the (S,n.) 

coordinates, Eq. (1) can be written in the paraxial approximation as 

(V2 + 2ik3/3n.)E = K2E, (7) 

2 
where K is given by 

K2 = k2 - 2k2(n0/n )I. (8) p      Z    o 

In obtaining Eq. (7) we used the transformations 3/9z = 3/£ + 3/311 and 3/3t 

= - v3/3£. The linear group velocity as well as the linear phase velocity 

2 
is v = co/k = c/n . The paraxial approximation implies that K is small 

2 
compared to k . In the absence of the nonlinear index (n„ = 0), the . 

paraxial approximation requires that the plasma density be small compared 

2   2 
to the critical density, w < » . 

B.  Photo-Ionization Model 

33-35 
Ionization can occur by electron collisional processes    or by the 

intense optical fields directly, ~  i.e., photo-ionization. In the 

absence of collisions or for laser pulses short compared to a collision 

time, photo-ionization is the dominant process.  Photo-ionization can take 



place by either tunneling or multi-photon processes, see Appendix A. These 

1/2 
regimes are characterized by the Keldysh parameter rk = (ui/eos)  » where 

7 
U, is the ionization energy and e  = (l/2)m(q|E|/mw) is the electron j. os 

oscillation energy. The low field limit (rk > 1) corresponds to the multi- 

photon ionization regime, whereas the high field limit (yk < 1) corresponds 

to the tunneling ionization regime. 

The evolution of plasma density in Eq. (4a) is given by 

3np/3t = (nnQ - np)W(|E|), (9) 

where n  is the initial neutral density, W(|E|) is the ionization rate and 
no 

the convection term V-(n v ) is neglected. For a linearly polarized optical 
P~P 

-,. .  /  > ,x •   •   u 24-28 field, the ionization rate in the tunneling limit (rk < 1) is given by 

W(|E|) = 4(3/n)1/2Qo(UI)
7/A(EH/|E|)

1/2exp(- § (U-j. )3/2ER/|E |) , 

(10) 

16    1 
where S = arc/a =4.1 x 10  sec" is the characteristic atomic 

o   to 
_9 

frequency, af = 1/137 is the fine structure constant, aQ = 5.3 x 10  cm is 

the Bohr radius, (L = Uj/Ug, Uj is the ionization energy in eV, Uß = 13.6 

eV is the ionization energy of hydrogen, |E| is the magnitude of the 

optical field and EQ = |q|/a2 = 5.2 GV/cm is the atomic field of hydrogen. 

The intensity of a linearly polarized Gaussian optical beam in vacuum, with 

a peak field equal to Eg, is I = (c/8n)E2 = 3.6 x 1016 W/cm2. Equation (9) 

assumes that the gas is at most singly ionized. The solution of Eq. (9) 

yields 

o 
.2  .2 
kp = kPo 

1 - exp(-(n0/c) J V(|E|)<U') L (U) 

10 



where we have set 9/3t = -(c/n )9/3£ in Eq. (9), £ is defined in the region 

£ < 0, i, =  0 corresponds to the front of the beam and ck  = »  = 
— r po   po 

2     1/2 
(4nq n /m)   is the plasma frequency associated with the initial neutral 

gas density. For low levels of ionization, i.e., n « n , Eq. (11) ° p    no 

reduces to 

o 
kp " kpo(no/c) Jw<lil>d*'' <12> 

The weakly ionized limit is sufficient to describe self-guiding of optical 

beams, since it will be shown that in the highly ionized limit n « n 

there is no matched beam solution. The expression in Eq. (8) can be 

written as 

o 

K2 = k2o(no/c) Jw(|E|)dt' - 2k2(n2/no)I. (13) 

C.  Source Dependent Expansion Method 

The following analysis is based on the SDE method developed in Ref. 

22. The SDE is a powerful method for solving the paraxial wave equation 

for optical beams propagating in nonlinear media.  In the SDE method, the 

optical beam is expanded in a complete set of source dependent orthogonal 

Laguerre-Gaussian functions. These functions are implicitly functions of 

the propagation distance, X\,  through the optical beam parameters, i.e., 

spot size, wavefront curvature, amplitude and phase. The optical beam can 

be described by four coupled first order differential equations for the 

beam parameters in the variable X).    In general, E can be written in terms 

of a complete set of Laguerre-Gaussian functions, i.e., source-dependent 

modes, 

11 



£ ■ I (am,pCOs(pe>^l + bm,psin<Pe)<K<X)' (U) 

m,p 

where m,p = 0,1,2,..., am (n), b (r\)  are complex coefficients and are 
m, p     m, p 

functions of n., e., e. denote transverse unit vectors defining the 

polarization, DP(X) = Xp/2LP(X)exp(- (1 - icc)X/2), X = 2r2/r^, r (n) is mm a  a 
2 

real and denotes the spot size, a(n.) = krg/(2Rc) is real, Rc is the radius 

of curvature associated with the wave front, and LP is an associated 

Laguerre polynomial, e.g., Lp(X) = 1 and LP(X) = 1 + p - X- The 

representation in Eq. (14) forms a complete set and can be used to 

represent any arbitrary optical beam. 

To proceed with the SDE analysis we substitute Eq. (14) into the 

paraxial wave equation, Eq. (7), carry out the indicated differential 

operations, perform the operation 

2n 

J fcos(p'9), sin(p'9))de/2n 

o 

on both sides of the equation, multiply both sides by (D^(X)) and finally 

integrate over X from 0 to °°. The algebraic details can be found in Ref. 

22. The resulting equation for a   is m, p 

f£- + A      la        - imBa    1    -i(m + p + l)B*am ,   n = - iF      ,     (15) Uli        m,pj m,p m-l,p r m+l,p m,p 

where 

A        = r /r    + i(2m + p + 1)f(l + a2)/(kr2)  - or /r    + i/2),   (16a) 
m,p S     S V s&&y 

B(n)  = - <xrs/rs -  (1 - a2)/(kr2)  + i/2 - i (rg/rs - 2a/(kr2)), (16b) 

12 



2n 
F
m n = 9^7 tm  ?!n^ \   de \ dx K2(X, 9, n)E(X, 6, n) • e. m,p  Znk. (m + p)! J    J ~ ± 

x (DP(X)) cos(P9)/(l + 6  ), (16c) 

8  , is the Kronecker delta, the dot denotes the operator d/dX],  and the 
P>P 

asterisk denotes the complex conjugate. The equation for b   is identical m, p 

to the one for a   except in the expression for F  , cos(p9)/(l + 8  ) m,p    r m,p p,o 

is replaced with sin(pG).  In obtaining Eq. (15) a number of identities 

associated with Laguerre-Gaussian functions were used, including the 

orthogonality relation 

K(x>CDP<X)>*dX ■ <^ *m>n. 

Equation (15), together with the definitions in Eqs. (16), describes 

the evolution of the various source dependent Laguere-Gaussian modes. 

However, Eq. (15) is underdetermined since there are more unknowns than 

equations. An additional constraint, i.e., a specification of the function 

B(ri), is necessary to solve Eq. (15). The individual source dependent 

modes in Eq. (14) are functions of the spot size, r (h), wavefront radius s 

of curvature, R = kr /(2a), amplitude and phase, am . Since B(n) is also 

a function of r and a, the evolution of the source dependent mode is 
s 

governed by the particular choice for the function B. For example, if we 

choose B(Vi) =0, we recover the conventional vacuum modes.  In general, 

expansion in terms of the vacuum modes (B = 0) requires many modes to 

accurately describe a guided optical beam over distances of many Rayleigh 

lengths. A more appropriate choice for B(f|) will depend on the particular 

problem under consideration and will be discussed later. 

13 



The dynamics of i) a fundamental Gaussian beam and ii) a higher-order 

radially-polarized axially symmetric beam will be considered. The 

fundamental Gaussian beam is described by the mode numbers m = 0 and p = 0, 

whereas the higher-order radially-polarized axially symmetric beam is 

described by the mode numbers m = 0 and p = 1. The analysis can be 

significantly simplified by setting m = 0. 

In the following, it is assumed that the dynamics of the optical beam 

can be adequately described by the behavior of a single source dependent 

mode, e.g., the m = 0, p = 0 mode for the fundamental Gaussian and the m = 

0, p = 1 mode for the higher-order beam. In the SDE method, it is assumed 

that the coupling to, as well as the amplitude of, the higher-order source 

dependent modes are small. In fact, an optimal choice for the function 

B(n) can be determined from Eq. (15) by requiring that the higher-order 

source dependent modes, i.e., m > 1, are small. Since, for the cases under 

consideration, |aQ p | » |am>p| for m > 1, it is clear from Eq. (15) (with 

m = 1) that the optimal choice for B is 

B = Fi n/an n' (17) 
l,p U,p 

where B and Fn  are given by Eq. (16b) and (16c) respectively. With this 
1>P 

choice for B, Eq. (15) (with m = 0) yields 

(In ♦ AO,PK,P ■ -iFo,P' <18) 

where A„  and FA  are given by Eqs. (16). Equations (17) and (18) 
0,p     U,p 

completely determine the evolution of the source dependent optical beam 

mode. Substituting Eqs. (16a,b) into Eqs. (17) and setting aQ>p - 

E exD(iG ), where E and 9 are real and denote the field amplitude and 
o     o        o     o 

. 22 
phase, we obtain 
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eo +  (1 + p)[(l + a2)/(krj)  - ai-s/rs +   'oJl\  = - G, (19a) 

or IT    +  (1 - a2)/(kr2) - i/2 = - H, (19b) 
o        5 S 

rg/rs - 2a/(krp  = 0, (19c) 

E /E    + T IT    . 0, o    o        s    s ' (19d) 

where G = Fn /an  and H = F-  /aA  are real. The source functions G and 
0,p 0,p        l,p 0,p 

H are given by 

= 5k J dX K2<X»»l)XPexp(-X) 
1 

a-x/(i+p)j 
(20) 

and K is given by Eq. (13). 

D.  Envelope, Amplitude and Phase of Optical Beam 

Equations (19b) and (19c) can be combined to form an envelope equation 

for the optical-beam 

32rg/3n
2 - 4[l + kr2H]/fk2rJ) = 0. (21) 

In addition, the amplitude, phase, curvature, and axial phase velocity v ph 

of the optical beam are given respectively by 

3(Eors)/3n = 0, 

and 

9o = -(1 + p) [2/(krJ) + H] - G, 

a = kr /(2R ) = kr r II, 
s   c    s s 

vph -  <* " Vk)c/V 

(22a) 

(22b) 

(22c) 

(22d) 
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where |9/k| « 1 was assumed in Eq. (22d). Note that Eq. (22a) implies 
2 

that the optical power, which is proportional to (Er) , is a conserved 

2 
quantity, consistent with the paraxial wave equation when K is real. 

For propagation in vacuum (n = 1) the solution of Eqs. (19a-d) yield 

1 'S ^fi 
the conventional vacuum modes.  '   In vacuum, the source terms vanish, 

i.e., G = H = 0, and the solutions are characterized by a spot size rg = 

r (1 + n IZZ  )  , r  is the minimum spot size at the focal point n. = z = 
sov      Ro     so 

0, ZD = kr2 II  is the Rayleigh length, a = n/ZR = z/Z_ , a wavefront RO   = SO ivajricijsu   XC..BL«.,    <*  -   >l'"Ro   -   "' "R0> 

Of 

-1 

2  2 
radius of curvature R = z(l + ZRQ/Z ), a phase factor 9Q = 9Q(n = 0) - (1 

+ p)tan a, an amplitude E^ = E (n = 0)r /r , and a phase velocity v ,/c = 
O     O SU   S r 

1 + 2(1 + p)/k2rj. 

III. Fundamental Gaussian Beam Propagation 

We first consider the dynamics of a fundamental Gaussian optical beam 

propagating in a gas undergoing ionization. The fundamental Gaussian beam 

polarized in the x-direction, is obtained by setting m = p = 0 and e^ = ex 

in Eq. (14).  Using Eq. (14) and Eq. (6), the Gaussian beam is given by 

E = E exp(-r2/r2 + i<|/)e 12 +  c.c, (23) 

where * = k£ + 9 + ar2/r2 and the functions E . 9 . a, and r are given by T O        S o   o s 

Eqs. (21) and (22) with p = 0. From Eq. (22a), 

Eoa,n) = Eoa,n = 0)rsa,n = 0)/rsa,n), where E2(S,n = 0)r2(^,n = 0) is 

proportional to the optical beam power P(£). The intensity and power 

associated with the Gaussian beam in a medium of refractive index nQ are 

respectively 

I = (c/4n)<E x B>-e„ = I exp(-X), (24a) ~  ~  z   p 
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P = (n/2)rj J dX KX) = (n/2)r*Ip, (24b) 

2 
where I = (en /8n)E is the peak intensity along the axis, r = 0 and < > 

denotes time averaging. 

To determine the optical beam dynamics from Eqs. (21) and (22) the 

source functions G(n.) and H(n.) in Eq. (20) are evaluated with p = 0. 

Substituting Eq. (13) into Eq. (20) and integrating over X we obtain 

W 
= -(k/2) (n2/no)I 

1 ^ 

U/2J 
- (k /k)' v po ' 

JG1 

W, G2' 

(25) 

where the functions a„., a_2 represent filling factors which are 

essentially the ratio of the cross-sectional area of the plasma to that of 

the optical mode times the normalized plasma density. The functions a„^ 

and ff_2 
are given by 

""I - J« (k, 
\l\      o 

/k )' 
P Po' 

' 1 , 

1-X- 
exp(-X) (26) 

Ionization is maximum where the optical field amplitude is maximum, i.e., 

at r = 0 for the fundamental Gaussian beam. Since the tunneling ionization 

rate W(|E|) depends exponentially on the field amplitude, the radial 

profile of the plasma density will be highly peaked about the axis r = 0. 

Equation (26) can be simplified by expanding the integrand about r = 0, 

which gives a», = aG2 = °G>  where 

o °° 

aG = J d^KG(^)(r2(^')/rJ(0)J dX exp (-bgU )X/2J 

2 Jds'KGa')(r^<s')/r2<0)/bG<*'.). (27) 
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and 

KG(0 = 4no(3/n)
1/2(ß0/c)(

öi)7/4(£oa))"1/2exp(-bG(0)'(28a) 

bG(0 = (2/3)(UI)
3/2/Eo(0, (28b) 

and E = E /Eu. The quantities Kr, br, r , and E are functions of £ and 
OOti bbS        u 

2 2 n, whereas the power P ~ r E is only a function of £ as implied by Eq. 

(22a). 

A.  Envelope Equation for Gaussian Beam 

Using Eqs. (25)-(28), the envelope equation for the Gaussian beam in 

Eq. (21) becomes 

3W = ZRO*"3!1
 - P/PNG + <1/2>rskpo*G)' 

(29) 

2        2 where r  is constant, ZRQ = krgQ/2 . itnors()/X is the Rayleigh length 

associated with the spot size r , R = r_/r  is the normalized spot size, so      s so 

P = (Ji/2)I r2 is the total power and PNG = X /(2nnQn2) is the nonlinear 

focusing power for the Gaussian beam.     The terms on the right-hand 

side of Eq. (29) denote, respectively, vacuum diffraction, nonlinear 

focusing and plasma defocusing. 

In the absence of ionization (aG = 0) the envelope equation in Eq. 

(29) has the solution 

1/2 
rs = rso(1 + (1-P/PNG><*/ZRo>2)  ' (30) 

where r is assumed to be zero at X)  = 0. For P < PNr the optical beam s NG 

diffracts with an effective Rayleigh length given by 

h-«- *'V-U\„- (31) 
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For P = PNr, diffractive spreading balances nonlinear focusing and a 

matched self-guided beam can, in principle, be obtained. However, small 

changes away from P = PNf will result in loss of equilibrium. For P > PNG 

the optical beam self-focuses. In the absence of ionization the beam 

focuses down to zero spot size with a focal length given by 

L£ . (P/PNG - 1)-U\0- (32) 

However, as the beam focuses the intensity on axis increases resulting in 

ionization and plasma defocusing, as is described by Eq. (29). 

B.  Self-Guided Gaussian Beam 

In the presence of ionization, self-guided solutions to Eq. (29) can 

2   2 be obtained. The condition for a self-guided beam, i.e., 3 R/3lr| = 0, is 

P/PNG - X - kpoVG/2 >- °- (33) 

Upon taking the derivative of this expression with respect to £ and using 

Eq. (27) we find that for a self-guided beam 

3P/H = - k2oPNGr2(OKGa)/bGU) 

- - PhGU), (34)' 

where 

hG = 16kpo<PNG/cno>KG<«/(Eo«)bG«>)' 

is a function of E (£). The solution of Eq. (34) yields the self-guided 

optical Gaussian beam power as a function of £, 

(   °       1 
P(S) = PNGexp JhG(^')dt'|. (35) 
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Equation (33) or (35) describes a family of equilibrium solutions, i.e., 

there are various equilibrium profiles ?(l),  EQ(£), and rg(S) which satisfy 

these equations. For example, if an equilibrium is chosen such that EQ(S) 

is constant along the optical beam, then hG is constant and Eq. (35) 
2 

implies PU) = PNGexp(-£hG) and the spot size profile is given by rg(0 = 

(16/cn )P(£)/E2.  Behind the beam front, £ <  0, the optical beam power and 

plasma density increase such that the nonlinear self-focusing term and the 

plasma defocusing term remain balanced. Other types of equilibria can be 

found, for example, one in which rg(0 is constant. 

C.  Stability of Gaussian Beam 

In this section, the self-guided beam equilibrium described above is 

shown to be inherently unstable, i.e., the beam will undergo what we refer 

to as an ionization-modulation (IM) instability. The IM instability is due 

to varying degrees of ionization along the beam and results in the 

modulation of the beam envelope and the disruption of the back of the beam. 

To examine the stability of the self-guided beam equilibrium, the envelope 

equation, Eq. (29), is expanded about the equilibrium solution. The 

perturbations Sr(£,n) and SE(£,n) are such that rgU) + Sr and EQ(£) + SE 

denote the perturbed spot size and optical field amplitude respectively. 

Furthermore, since the optical beam power within the paraxial approximation 

is nonevolving, i.e., independent of X),   the perturbations Sr and 5E are 

related by Sr = - (r /E )SE. Expansion of the envelope equation, Eq. (29), 

yields 

4k2        ° 
a2&r/3n2 - - -2-f2   r    ' 

* *;<*> i 
d£ KG(K )rsa >Sr(*  ,n), (36) 
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where t>r » 1 has been assumed (typically the case). For the special case 

of an equilibrium with a constant spot size, r (£) = r , Eq. (36) becomes 

9 2-^> 
L 8WH' 

Sr = 0, (37) 

where k = [2k /(kr )] !£_(£)• Equation (37) can be solved taking a 

Laplace transform in the Y\  variable, yielding 

Sr ~  ds exp 

B 

sn - s 2[ ds'k 
J    i 

(38) 

where s is the Laplace transform variable and the integration is over the 

Bromwich contour. The asymptotic behavior of 8r can be found by 

integrating Eq. (38) using the saddle point method, 

Sr ~ exp 
1/3 

(39) 

Alternatively, the asymptotic behavior of Sr can be determined from 

1/3 2/3 
Eq. (37) by assuming Sr is a function of only the variable x = (-£)  n. 

Substituting Sr = Sr(x) into Eq. (37) yields 

(4/27) fa3/3x3 + (3/2)x_132/3x2 -(l/2)x"23/3x]sr = -kg&r.  (40) 

In the asymptotic limit,  x ■> »,  Eq.   (40) reduces  to 

[33/3x3]Sr = -(27/4)k3Sr, (41) 

which yields the solution in Eq. (39). 

The growth rate in Eq. (39) can be simplified by noting that, along 

the axis r = 0, the equilibrium plasma density profile is given by 3n /3£ 
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-n Kn  and Eq. (39) becomes 6r ~ expf(l ± i^3)N (£,n)], where 
no u \       e    / 

1/3 2/3 
N = f3/25/3l (n /n 1   fk r n/Z„ 1 (42) 
e  r    M p noj   I po so  RoJ 

is the number of e-folds.  If the equilibrium is nearly constant in £, the 

plasma density profile is given by n /n  = I^I^G 
anc* t*ie num^er °^ e-folds 

is Ne = ao|^|1/3n2/3 where %  = (3M)(2KG)
1/3(kporso/ZRo)

2/3. The IM 

instability grows as a function of the distance behind the head of the 

optical beam, |£|, and the propagation distance h.. 

The dependence of N on £ indicates that the number of e-folds at the 

back of the beam is greater than near the front. The IM instability 

disrupts the back of the beam, and the disruption point propagates toward 

the front. The disruption point can be defined as the point on the beam 

where the initial perturbation is increased by exp(NQ), where NQ » 1 is 

the number of e-folds necessary for disruption. This point moves toward 

the front of the beam with relative velocity vd = - c(3Ne/3ri)/(3Ne/3S), 

where N (S,n.) = N . For the case where the plasma density profile is 

linear, i.e., n = K_n  |£|, the disruption velocity in the beam frame is 
p   u no 

v, = 2cN3cfV3. (43) d    o o 

To gain some understanding of the IM instability, consider increasing 

the spot size of an initially matched optical beam, i.e., Sr(ri = 0) > 0. 

In this case the beam intensity and ionization rate are reduced resulting 

in less plasma generation and enhanced focusing of the beam. The focusing 

optical beam overshoots its equilibrium value such that 6r < 0 some 

distance behind the beam front. When 6r < 0, the intensity, ionization 

rate, and plasma density increase, causing the beam to defocus and 

overshoot its equilibrium value. This focusing and defocusing of the beam 

22 



results in the IM instability. The modulation amplitude and period are 

functions of the distance back from the head of the optical beam, \l\,  and 

the propagation distance, n, = z, as indicated by Eq. (42). 

D.  Numerical Results for Gaussian Beams 

1. Dynamic Solutions 

The propagation dynamics of the fundamental Gaussian beam is studied 

by numerically solving the envelope equation, Eq. (29), for the spot size 

r (£,Y\).    The envelope equation is numerically integrated in n. (axial 

propagation distance) using a finite-difference method, where the initial 

conditions rg(£,n. = 0) and (3rg(S,n)/3n.) Q are specified. Note that in 

evaluating the filling factor <xG(S,n.) in Eq. (27), the integral over I    is 

carried out at every n. step, since the integrand in Eq. (27) is a function 

of £,   and n. We consider a linearly-polarized laser pulse with a Gaussian 

radial profile and an initial (n. = z = 0) axial profile given by EQ(^,0) = 

1/2 
E osin(n|S|/L) for -L < I <  0, where E  = (8nl /c)   is the initial peak 

13    2 
electric field, I  = 3.0 x 10  W/cm is the initial peak intensity, and L 

= 60 urn is the pulse length. With wavelength X = 1 urn and initial spot 

size r  =80 um, the peak power is P = 3.0 GW and the diffraction length 

is ZD =2.0 cm. The optical pulse propagates in air at 1 atm: neutral 
KO 

19  -3 37 -19 
gas density n  = 2.7 x 10  cm , nonlinear index  n0 = 5.6 x 10 °       J    no *■ 

cm /W, normalized ionization potential u\VUH = 1.07, and nonlinear focusing 

power PNG = 2.8 GW (PQ/PNG =1-1). 

The simulation begins with the optical pulse at focus (3r /3n, = 0) in 

the neutral gas. With the initial value of the filling factor aQ  computed 

via Eq. (27), the envelope equation, Eq. (29), is integrated in the 

simulation variables I  = z - vt and n. = z. Figures 2(a) and 2(b) show the 
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initial h. = 0 optical beam intensity I and plasma density n versus (r,£). 

In Figs. 2(a) and 2(b), the direction of propagation is towards the right. 

Plots of I and n versus radius at the pulse center (£ = - 30 urn) are shown 
P 

in Fig. 2(c) for this case. Note also that the nonlinear nature of the 

ionization process causes the plasma density gradient versus both r and £ 

to be considerably sharper than the intensity gradient. 

The evolution of the optical pulse is shown in Fig. 3(a-d), where the 

spot size r (dashed line), intensity I on axis (solid line), and plasma 

density n on axis (dotted line) are plotted versus I at (a) n. = z = 0, (b) 

6 cm, (c) 8 cm, and (d) 10 cm. Initially, the spot size is constant along 

the optical pulse, as shown in Fig. 3(a). Because PQ > PNG, the center of 

the pulse is focused while the front and back portions diffract, as seen in 

Fig. 3(b). At £ = -25 urn, where P = PNG and n « nnQ, diffraction 

balances nonlinear focusing and the spot size remains constant at rg = rgo- 

Behind this point, focusing increases the optical intensity, producing a 

corresponding increase in the ionization rate. Because ionization is a 

highly nonlinear process, the steepness of the plasma density gradient also 

increases. Increased ionization and increased plasma density gradients are 

shown in Figs. 3(b-d). Increased ionization causes the latter portion of 

the optical pulse to diffract, as can be seen in Figs. 3(c,d). The rapid 

change in the plasma density at the steepening ionization front results in 

a correspondingly rapid change in the focusing of the optical pulse. This 

results in an increasingly narrow intensity spike at the ionization front. 

The optical pulse structure observed in Figs. 3(c,d) occurs even when 

the power P greatly exceeds the nonlinear focusing threshold PNG- For 

example, Figs. 4(a-d) show the evolution of a pulse with P0/PNG = 2. 

Except for the initial power and the initial spot size rgo = 110 urn (and a 
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corresponding change in ZR =3.8 cm), the parameters of Fig. 4 are 

identical to those of Fig. 3. As in Fig. 3, there is a point near the 

front of the pulse in Fig. 4 (at I  « -15 um) where P a PNG, n « nnQ, and 

diffraction balances nonlinear focusing. Also as before, nonlinear 

focusing of the pulse behind this point leads to an increasingly steep 

ionization front. This, in turn, produces an increasingly narrow optical 

intensity spike. 

2.  Self-Guided Solutions 

Examples of matched beam equilibria are shown in Figs. 5 and 6. In 

both cases, we consider a linearly polarized X = 1 urn optical pulse with a 

19  -3 
Gaussian radial profile propagating in air at 1 atm (nnQ = 2.7 x 10  cm , 

n2 = 5.6 xlO
19 cm2/W, UJ/UJJ = 1.07, and PNG = 2.8 GW). Figure 5 shows 

optical power profiles (solid lines) and plasma density profiles (dashed 

lines) plotted versus Z, along the axis for equilibria with constant EQ(0 

profiles. Equilibria are shown for three different values of the optical 

intensity: I = I1 = 5 x 10
13 W/cm2, I2 = 6 x 10

13 W/cm2, and I3 = 7 x 

1013 W/cm2. Here, E (£) = (8nl /c)   is constant along the length of the 

optical pulse, such that the variation in power P(£) corresponds to a 

1/2 
variation in spot size r = (2P/HI )  . Note that the constant E profile 

produces a constant ionization rate and a linear rise in n /n  « 1. 

Also, the power profiles are exponential functions as given in Eq. (35). 

Figure 6 shows optical power and plasma density profiles for 

equilibria with constant r (O = rgo profiles.  In this case, matched EQ(£) 

profiles are determined numerically from Eq. (34) for three different 

13    2 
values of the leading-edge (I = 0) intensity: I = I1 = 5 x 10  W/cm , I2 

= 5.1 x 1013 W/cm2, and I, = 5.2 x 10  W/cm .  In this case, the variation 
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2 
in optical power P(0 corresponds to a variation in intensity I = 2P/nrgo, 

such that E increases with \l\  along the length of the pulse. As a 
o 

result, the ionization rate increases as a function of \l\.    Increased 

ionization (defocusing) requires increased power (focusing) to compensate, 

further increasing the ionization in a highly nonlinear manner.  As a 

result, the constant-r equilibrium profiles can be very sensitive to the 
' s 

value of I as in Fig. 6. 

3. Ionization-Modulation Instability 

An example of the IM instability for a fundamental Gaussian beam 

obtained by numerical solution of the envelope equation, Eq. (29), is shown 

in Fig. 7. Here, we consider the propagation in air of a constant-rg 

equilibrium with Ip(£ = 0) = 3.0 x 10
13 W/cm2, rg = rgQ « 78 ym, and ZRQ * 

1.9 cm.  In this case, there is very little initial ionization and the 

growth of the instability is extremely slow with P(£) = PNG = 2.8 GW along 

the length of the optical pulse. The evolution of the optical pulse is 

shown in Figs. 7(a-f), where the spot size rg (solid line) and plasma 

density n on axis (dashed line) are plotted versus I at (a) n = z = 0, (b) 
P 

400 cm, (c) 450 cm, (d) 500 cm, (e) 550 cm, and (f) 600 cm. In Fig. 7, the 

direction of propagation is towards the right. 

The simulation begins, Fig. 7(a), with the optical pulse at focus 

(3r /3n = 0) in the neutral gas. In Fig. 7(a), the spot size rg is 

constant along the pulse and n (O increases linearly since EQ is 

approximately constant. At later times, Figs. 7(b-d), oscillations in rg 

cause oscillations in the ionization rate such that each region where rg 

has decreased corresponds to an increase in ionization. This is 

particularly noticeable at the back of the pulse (£ = -60 um) in Fig. 7(c). 

26 



Eventually, there is a large enough increase in the plasma density so 

that the latter portion of the optical pulse is defocused, i.e., the 

guiding is disrupted. When the optical pulse is sufficiently defocused the 

ionization rate falls and dn /d£ = 0. Thus, an "ionization front" develops 

which propagates forward in the beam frame. This can be seen in Fig. 7(e), 

where the ionization front is at K  = -40 ym, and in Fig. 7(f), where the 

ionization front is at £ = -33 ym. Figures 7 indicate that the disruption 

velocity is in good agreement with Eq. (43). 

The growth of the instability of Fig. 7 is plotted versus I at fixed n. 

= z = 550 cm in Fig. 8(a), where ln|Ar|), from the numerical integration of 

the envelope equation, is compared to the number of e-folds N from Eq. 

(42). Here, Ar = (r - r )/r . Similarly, ln|Ar|) versus n. = z at fixed 
s   so  so 

Z, = -49 ym is shown in Fig. 8(b). For both plots, excellent agreement is 

observed between the slope of N (£) and the peaks of the ln|Ar|) curve. As 

expected, agreement tends to break down for £,n. -»0, where the growth is 

not yet asymptotic, and for ln|Ar|) -*  0, where the growth is nonlinear. 

IV. Higher-Order Radially-Polarized Beam Propagation 

We now consider the dynamics of a radially-polarized optical beam 

propagating in a gas undergoing ionization. The radially-polarized optical 

beam is formed by taking m = 0, p = 1 in Eq. (14), setting ao i = bo 1 = 

E exp(i0 ), e. = e and e. = e . The resulting field, from Eqs. (6) and 
O       O     -L     X       JL     jr 

(14), is 

E e E (>f2r/rs)exp(- r2/rj + i<J/)er/2 + c.c, (44) 
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2,  2 9 e + siriG e is the unit radial where \\i  = k£ + 9 + our /r and £ = cos o      s     r 

vector. The functions E , 6 , a, and r satisfy Eqs. (21) and (22) with p 0   0 s 

= 1. From Eq. (22a), Eo(^,n) = E0U
,Vl = 0)rs

(^'ri = °)/rs^'n)' where 

E2(£,n. = 0)r2(£,n = 0) is proportional to the optical beam power P(0- The 
o        s 

axial field component associated with the radial field in Eq. (44), as 

obtained from v"«E = 0, is maximum along the axis and given by 

E = 2^- 
~z   kr 

- Eo(l - (r2/r2)(l - ia)]exp(- r2/r2 + i^)ez/2 + c.c, 

(45a) 

E2(r . 0, . ig * - E exp(ik£ + i9 )e /2 + c.c, o o z 
(45b) 

where the expression in Eq. (45b) is valid along the z-axis, i.e., r = 0. 

The intensity and power associated with the radially-polarized beam in a 

medium of refractive index n are respectively 

I = (c/4n)<E x B>-e^ = I Xexp(l-X), ~  ~  z   p 
(46a) 

P = (n/2)r2 J dX KX) = (en/2)r2Ip, (46b) 

n 

where I = (en /8n)E /e is the maximum intensity, which occurs at X = 1 
p    o    o 

(r = r /-JT), e « 2.72 and < > denotes time averaging. Similar higher-order 
s 

radially-polarized modes have been produced using an axicon focusing 

f. «..  38,39 configuration. 

To determine the optical beam dynamics from Eqs. (21) and (22) the 

source functions G(n) and H(n) in Eq. (20) are evaluated with p = 1. 

Substituting K2 from Eq. (13) into Eq. (20) and integrating over n yields 

= -(k/2) (e/2)(n2/no)I 
/ i ^ 

U/4J 
+ <Vk)' 

°R1 

UR2;J 
(47) 
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where the filling factors cxR1 ~ are given by 

en 

'    1     ^ 
Ttl 2_-X 

W, R2' 
" J dX (kp/kpo)2xe 

U-X/2J 
(48) 

The tunneling ionization rate W(|||) is maximum when the optical field is 

maximum. The magnitude of the radial polarized field in the expression for 

9 * 1/2 
k , Eq. (12), can be written as |E| = EQ(1 + y)  exp[(l + y)/2], where y = 

2r2/r2(s') - 1, and has a maximum at y = 0, i.e., r = r(£ )/$2.    Expanding 
s s 

|E| for y « 1 gives |E_| = (E /4e)(l - y /4). Using this expression in 

W(|||), and noting that W(|E|) is highly peaked about y = 0, gives 

2 2 
kz(£)/k P po 

= e dSl^a )e 
\a )y*/4 

(49) 

where 

-1/2 
K^S)  = 4n0(3/n)1/V3/4(Q0/c)(UI)

7A(E0(0) exp(-bR(^)), 

(50a) 

bR(0 = fe1'2^)3'2/!^*), (50b) 

and E = E /E„. Inserting Eq. (49) into the expressions for the filling 
O    On 

factors, Eq. (48), and assuming bR » 1 allows the integration over r to be 

carried out yielding 

3R1 

WR2; 
= 2Ü 

/    i     _l/2  ' 

u-x2/2; 
X4exp(l Xp, (51) 

where Xg = rgU )/rg(0- 
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A.  Envelope Equation for Higher-Order Beam 

Using Eq. (47) for the source function H, the envelope equation in Eq. 

(21) becomes 

9W = hl^i1 -  P/PNR + <1/2>rskpo*R2)' 
(52) 

2        2 
where r  is constant, ZD = k.r /2 = nn r /X is the Rayleigh length so Ro    so     o so 

associated with the spot size r , R = r /r  is the normalized spot size, r so     s so 
2 2 

P = (eit/2)I r is the total power, and P^ = 4PNG = 2X /(nnQn2) is the 

nonlinear focusing power for the higher-order radially-polarized beam. The 

terms on the right-hand side of Eq. (52) denote respectively, vacuum 

diffraction, nonlinear focusing and plasma defocusing. In the absence of 

ionization, aR2 = 0, the solution to Eq. (52) for rg is given by Eq. (30) 

with P„G replaced by Pj^. 

B.  Self-Guided Higher-Order Beam 

2   2 
The condition for a matched beam, i.e., 3 R/3n. = 0, is given by 

P/PNR " 1  " kpors*R2/2 >- °- (53) 

Equation (53) describes a family of equilibrium solutions, i.e., there are 

various equilibrium profiles P(£), E f£)» and r (£) which satisfy Eq. (53). o        s 

For the special case of a constant spot size matched beam, rg = rgQ, the 

matched-beam power is given by 

3P/H - -(^/2)k20PNRr
2
oKR(0/b^/2(0, (54) 

where 1^(0 and bR(£) are functions of P(0 through EQ(0» i-e., P(0 = 

(cno/16)E
2(Or20. 
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C.  Stability of Higher-Order Beam 

The stability of the matched-beam equilibrium can be analyzed by 

perturbing the envelope equation, Eq. (52), about the matched beam 

solution. This is accomplished by introducing a constant power 

perturbation to the spot size and field amplitude of the form rg(S) + 

6r(S,n) and EQ(0 + SE(S,n), where SE/EQ = -8r/rg. In the limit bR » 1, 

the envelope perturbation satisfies the equation 

2    2 
9 5r/3n = 

.2 
r— k r •in    po so 
2  2 3 

Ro 

d£, (2 - X*)bRU )&r(^ ) 

+ 2Xs (2 
4X2 + x4j&ra) 

1-Y 
'     '  -1/2  '  2   s 

rs<* >*R<* )bR  ^  )Xse   ■ 

(55) 

For a constant spot size equilibrium, Xg = 1, Eq. (55) becomes 

(   2 
- 2 

o   k3N 

."4 ff^-k^fc, (56) 

2 
where k^ = 2Jl(k 0/(krSQ)] K^b^

2. In the limit bR » Ng » 1, where 

N is the number of e-folds of the instability, the second term on the left 
e 

of Eq. (56) can be neglected and the asymptotic behavior of Sr is given by 

Sr ~ exp J(i ± i«) (an2 J «•$ 
1/3 

(57) 

Notice that, for an equilibrium in which EQ(£) is nearly constant, the peak 

equilibrium plasma density occurs at r = rg/42 and is given by np/nnQ = 
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-eKpS. In this limit, the asymptotic behavior of Sr can be written as 8r 

exp((l ± i-JT)N J, where 

N = 3 Hn bl/2 ( /  ) (k r n/ZD )2 
e  4 e  R    p no' v po so  Ro' 

Nl/3 

(58) 

is the number of e-folds. Hence, the growth rate of the IM instability for 

the higher-order optical beam differs roughly by a factor of (nbR/4e ) 

1 from that of the fundamental, assuming equal values at krso, 
n
p
/n

no> 

and n/ZRo. 

D.  Numerical Results for Higher-Order Beam 

1. Dynamic Solutions 

The propagation dynamics of a higher-order radially-polarized laser 

pulse can be described by a numerical solution of the envelope equation, 

Eq. (52). Initially, n. = z = 0, the profile of the radial electric field 

is |E(r,£)| = Eoa,0)(^2r/rs)exp(-r
2/rg), with an axial profile EQ(0 = 

E e1/2sin(Ji|£|/L) for -L < £ < 0, where L = 60 urn is the optical pulse 
po       ■ '        ~  — 

length. The peak initial field, occurring at r = rg/J2, is E  = 

(8nl /c)1/2, where I  = 4.7 x 10  W/cm is the peak initial optical 
po po 

intensity. With wavelength X = 1 urn and initial spot size rgQ = 35 urn,, the 

peak power is P = 2.5 GW and the diffraction length is ZRQ = 0.4 cm. We 

consider propagation in Hydrogen (H„) at 30 atm: nonlinear index n2 = 3.3 

x 10"18 cm2/W, ionization energy U,. = 15.4 eV, neutral density nnQ = 8.1 x 

1020 cm-3, and nonlinear focusing power P^ = 1.9 GW (PQ/PJJR = 1-3). 

Hydrogen is chosen for its low atomic number Z& and, hence, Bremsstrahlung 

losses can be neglected, see Appendix C. 
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The simulation begins with the optical pulse at focus (3r /3n. = 0) in s 

the neutral gas with intensity I(r,£) and plasma density n (r,£) profiles 

initialized as shown in Fig. 9(a,b), where the direction of propagation is 

towards the right. The accelerating field E = |E | profile is plotted in 

Fig. 9(c), where E = E exp(ik^)/2 + c.c. with E given by Eq. (45).  Plots 
z   z z 

of I, E , and n versus radius at the pulse center (£ = -30 urn) are shown 

in Fig. 9(d) for this case. The highly nonlinear nature of the ionization 

process causes the plasma density gradient versus both r and £ to be 

considerably sharper than the intensity gradient. 

The evolution of the optical pulse is shown in Figs. 10(a-d), where 

the spot size r (dashed line), accelerating field E on axis (solid line), 
s z 

and plasma density n (dotted line) are plotted versus £ at (a) n. = z = 0, 

(b) 0.4 cm, (c) 0.7 cm, and (d) 1.0 cm. In Figs. 10(a-d), n (£) is 

evaluated at r = r . /^2,  where r .  is the minimum value of r (£)• min  '      min s 

Initially, the spot size is constant along the optical pulse, and the peak 

accelerating field is I = 400 MV/m, as in Fig. 10(a). Since PQ > P^, the 

center of the pulse is focused while the front and back portions diffract, 

as shown in Fig. 10(b). The increasing optical intensity in the center of 

-    1/2 
the pulse increases the. accelerating field since E ~ I  . Diffraction 

balances nonlinear focusing at £ = -21 um, where P = P™, and the spot size 

remains constant, r = r . Behind this point, focusing increases the 
s   so 

optical intensity, producing a corresponding increase in the ionization 

rate. Increased ionization and increased plasma density gradients are 

shown in Figs. 10(a-c). Increased ionization causes the optical pulse to 

diffract, reducing E in the latter portion of the pulse, as shown in Figs. 

10(c,d). The rapid change in the plasma density at the steepening 

ionization front results in a corresponding rapid change in the focusing of 
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the pulse which results in an increasingly narrow spike in E at the 

ionization front. The peak, accelerating field is Ez = 1.1 GV/m at n. = z = 

1.0 cm e 2.5ZD . Ro 

2. Self-Guided Solutions 

An example of a self-guided, higher-order radially-polarized beam of 

wavelength X = 1 urn propagating in Hydrogen (H„) at 30 atm is shown in Fig. 

11. For H2 at 30 atm, nnQ = 8.1 x 10
20 cm"3, n2 = 3.3 x 10~

18 cm2/W, Uyi^ 

= 1.1, and Pm  « 1.9 GW. The matched beam conditions can be determined 
NR 

from Eq. (53) together with Eq. (51) for a given axial intensity profile. 

For equilibria with constant E (£) profiles, i.e., constant peak intensity 

13    2 of I = 4.7 x 10  W/cm , the matched profiles for power P and plasma 
P 

density n at r = r . /-J2 versus £ are shown in Fig. 11. For these '  p       min 
-4 

parameters, the degree of ionization is small, n./nno 1 10 . The spot 

size is given by r2(0 = 2P(£)/(neI ), which gives rg(£ = 0) = rmin = 31 ym 

at the front of the beam. The on-axis accelerating field, also shown in 

Fig. 11, has the maximum value 450 MV/m at the front of the optical beam. 

—     1 /D 1II Since E ~ ni  ~ n  , the accelerating gradient can be increased by 
z   i. no 

increasing the gas pressure. 

3. Ionization-Modulation Instability 

As discussed in Sec. IV.C., the optical beam undergoes an IM 

instability. Numerical simulations of Eq. (52) show that, with a 1% 

initial perturbation of the spot size, the IM instability significantly 

disrupts the equilibrium beam profile of Fig. 11 after ~ 10 cm of 

propagation. The growth rate of the IM instability is a highly nonlinear 

function of the optical intensity through the plasma density. Reducing the 

intensity in the example of Fig. 11 to 3.2 x 10  V/cm (which reduces E~z 
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to 300 MeV/tn) results in a matched beam with very little ionization (the 

plasma density is reduced by a factor of ~ 130) and little variation in 

power and spot size along the length of the optical pulse.  Simulations 

show that with a 1%  perturbation in the spot size, the pulse propagates > 1 

meter without significant disruption. The behavior of the IM instability 

is shown in the following numerical example.  In this example, however, the 

instability is allowed to grow from numerical noise to facilitate 

comparison to the theoretical growth rate. 

Propagation of a guided pulse in H„ at 30 atm is shown in Fig. 12. 

Initially, I = 3.2 x 10  W/cm is constant throughout the pulse, the peak 

accelerating field is E = 300 MV/m, the spot size is rg « 37 urn (ZRQ = 

0.44 cm), and P(£) = P^ =1.9 GW. The evolution of the optical pulse is 

shown in Figs. 12(a-d), where the spot size r (dashed line), accelerating 

field E on axis (solid line), and plasma density n at r = r
min^  (dotted 

line) are plotted versus I at (a) n. = z = 0, (b) 60 cm, (c) 75 cm, and (d) 

90 cm. Initially, the spot size is constant along the optical pulse, and 

the peak, accelerating field is E"z = 300 MV/m, as in Fig. 12(a). At later 

times, Figs. 12(b-d), oscillations in r cause oscillations in the 

ionization rate such that each region where r has decreased corresponds to 
5 

an increase in -dn /d£. Eventually, the plasma density is sufficiently 

large so that the latter portion of the optical pulse is defocused. In the 

region where the pulse is sufficiently defocused the ionization rate falls, 

dn /d£ = 0, and an ionization front develops which propagates toward the 

front of the beam at the disruption velocity vd, see Eq. (43). This can be 

seen in Fig. 12(c), where the ionization front is at £ = -42 um, and in 

Fig. 12(d), where the ionization front is at £ = -29 um. 
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The growth of the perturbed radius due to the instability is plotted 

versus I  at fixed n = 75 cm in Fig. 13(a), where ln|Ar|), from the 

integration of the envelope equation, Eq. (52), is compared to the number 

of e-folds N from Eq. (58). Here, Ar = (r - r )/r  , where r (£) is 
Q S      SO    SO o 

plotted in Fig. 12(c). Similarly, growth versus n. = z at fixed £ = -40 urn 

is shown in Fig. 13(b). For both plots, good agreement is obtained between 

the slope of N (O and the peaks of the ln|Ar|) curve. As expected, 

agreement tends to break down for l,X\  -> 0, where the growth is not yet in 

the asymptotic limit, and for ln|Ar|) -»0, where the growth is nonlinear. 

V.  Self-Guided Inverse Cherenkov Accelerator 

A.  Electron Energy Gain in Vacuum 

The axial field component of a higher-order radially-polarized optical 

beam, which has an amplitude on axis of E  = (2-f2/kr )E , can be used to 
ZO S   O 

9 40-43 
accelerate an injected electron beam propagating along the z-axis. ' 

In vacuum, the phase velocity v , of the optical beam is greater than c and 

near the focal point is v ,/c = 1 + 2/kZR(). Since v . > c, phase slippage 

between the electrons and optical beam will occur. For a highly 

relativistic injected electron in vacuum, the slippage distance Lg is 

defined as the distance over which the electron phase slips by one-half an 

optical period, L (v , - c)/c « X/2, which gives Lg = 
nZR0

/2- ll  can be 

shown that a highly relativistic electron interacting with the axial 

optical field E in vacuum, Eq. (59), from z = -» to z = » experiences zero 

net energy gain. This result is a particular case of the Lawson-Woodward 

theorem. 

It can also be shown,9'38   however, that if the interaction distance 

is limited by placing a mirror approximately one Rayleigh length from the 
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focal point, i.e., -ZR < z < <*>,   then the maximum energy gain for a highly 

1/2 relativistic electron is Wg[MeV] = P  [GW]. Material damage 

considerations, associated with the introduction of an optical component 

9 42 
near focus, place serious limits on the optical intensity. ' 

B.  Electron Energy Gain in Conventional ICA 

By introducing a neutral gas into the interaction region, as in the 

inverse Cherenkov accelerator (ICA), the phase velocity of the optical beam 

can be reduced and phase slippage reduced. In the conventional ICA,   the 

optical beam diffracts and the effects of nonlinear self-focusing and 

ionization are neglected. For a higher-order Gaussian beam the phase 

velocity near focus is v ,/c = 1 + 2/kZD - (n - l)/n . Typically n - 1 J pn Rooo o 

« 1 and is proportional to the neutral gas density n . Proper choice of 

n  can result in v , < c and the reduction of phase slippage, however, 

diffraction remains an important limitation. 

The energy gain in a conventional ICA driven by a higher-order 

Gaussian beam can be calculated as follows. Assuming vacuum diffraction 

and neglecting nonlinear and plasma effects, the axial electric field along 

r = 0 in the conventional ICA is given by 

_1 
Ez(r = 0) = - Ezo (l + z2/zlo)    sin*, (59) 

where E  = (2-j2/kr )E (z = 0) is the peak axial electric field, zo        so o 

«1/ = kz - ckt/n - 2tan~ z/ZD + ij> is the phase and \J/ is a constant. Y o Ro   o o 

Equation (59) follows from Eq. (45) with EQ(^,n) = E0(S>>1 = 0)rso/rg(n), 

2 2 1/2 where r = r (1 + Xf /ZR)   and X]  = Z. The energy gain of a highly 

relativistic electron interacting with the optical field, given by Eq. 

(59), in a medium with linear refractive index nQ is given by 
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Wg = q   [ dz Ez(r = 0)  = - 2JiqEzoAkZRoexp(-AkZRo), (60) 

for Ak > 0 and V    =0 for Ak < 0,  where Ak = k(n    - 1/ß )/n    « k(n    - 1 - 

9 9—1/7 l/2v )/n   ,   Y    =  (1 -  ß ) is  the electron relativistic mass  factor,   ß    = 
0000 ° 

v /c, v is the axial electron velocity and an initial phase of sin\J/ = 1 
o    o ° 

was assumed. In obtaining Eq. (60) the electron trajectory was taken along 
2 

r = 0 from z = - » to z = °°, where z = ßQct = ct(l - 1/2Y0). Equation (60) 

is valid as long as the energy gain is less than the initial energy, W « 

(Y - l)mc . For highly relativistic electrons in vacuum (ßQ = 1 and nQ = 

1), Ak vanishes and the energy change is zero, W = 0, in accordance with 

the Lawson-Woodward theorem. In a gas, the energy gain Wg is maximum when 

AkZRo = 1, i.e., when nQ - 1 = no/kZRo + 1/2YJ = (1/2) ((X/iirs)
2/no + 1/^). 

In this case, the maximum energy gain in the conventional ICA is given by 

V = - qE (2n/e)Z- = - qE(0) fc^n/elr .        (61) max   M zov   ' Ro   M oN ' I.    ; so 

The maximum energy gain is the product of the peak axial field EzQ and 

(2n/e)ZD , which is the effective acceleration length. In terms of the 
KO 

optical power, Eq. (61) can be written as 

V [MeV] = 2.3 P1/2[GW]. (62) 
max1  J 

A similar result can be obtained in vacuum acceleration by limiting the 

interaction region to approximately 2ZR about the laser focus through the 

use of optical components (e.g., mirrors). 

In addition to the higher-order Gaussian optical beam discussed above, 

a conventional ICA could be driven by a first order Bessel (axicon) 

beam.7'8 A nonideal Bessel beam (finite transverse extent) consisting of N 
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2 
rings (lobes) will propagate a distance L   = NZR , where ZR = kr /2 and 

r is the width of an individual ring. Consequently, the maximum energy 

gain in a conventional ICA driven by a Bessel beam is approximately a 

1/2 factor of N   greater than an ICA driven by a higher-order Gaussian beam, 

assuming equal total power in each of the beams, as discussed in Appendix 

D. 

The above calculation of the energy gain in the conventional ICA 

assumes vacuum diffraction, i.e., the effects of nonlinear self-focusing 

and ionization are neglected. Equation (60) only holds for powers below 

the nonlinear focusing power, P « P™, and intensities below the 

ionization threshold, I « I_. Typically, at atmospheric pressures, P,™ ~ 

10 GW (1 TW) for a X = 1 um (10 urn) laser, the single stage energy gain in 

a conventional ICA driven by a higher-order Gaussian beam, Eq. (62), is 

limited to V ~ 5 MeV (50 MeV). Higher energy gains require higher laser 

power, and the effects of self-focusing and ionization can no longer be 
g 

neglected. Recent experiments at BNL on the conventional ICA observed a 

3.7 MeV energy gain (31 MeV/m) of an injected electron beam (40 MeV) using 

a 580 MW C02 laser (X = 10.6 ym) in 2.2 atm of H2 gas. 

C.   Electron Acceleration in Self-Guided ICA 

To enhance the single-stage energy gain, a self-guided ICA 

configuration is proposed and analyzed. The self-guided ICA operates at 

laser powers near the nonlinear focusing power and intensities near the 

ionization intensity. The self-guided ICA is based on the optically-guided 

higher-order radially-polarized optical beam described in Sec. IV. The 

energy gain is enhanced since (i) the self-guided ICA operates at higher 

power and intensity which increases the accelerating field, and (ii) the 
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optical beam is self-guided which increases the acceleration length beyond 

the limits of vacuum diffraction. 

1. Phase Velocity 

The evolution of the spot size of the higher-order radially-polarized 

beam in the self-guided ICA is described by Eq. (52). In addition, the 

evolution of phase velocity v . = cß , of the higher-order radially- 

polarized beam is given by Eq. (22d) with p = 1 together with Eqs. (47) and 

(51), 

-1  .. .2 2.-1 
ß , = n  + 4(n k r ) Kph   o     o  s' 

1-!rr + Kkpo(°Ri + 2''R2)l  <«> 

where the terms on the right-hand side denote, respectively, the 

contributions from the linear refractive index, finite spot size, nonlinear 

refractive index and the plasma. For a self-guided beam with rg = rgo, the 

phase velocity is ß , < 1 and given by 

ßph = (l - 0.5(X/nnorso)
2P/PNR)n-

1. (64) 

2 -1/2 
The Lorentz factor associated with ß , is y , = (1 - ß . )   , 

-1/2 
y , = f(X/Jtn2r )2P/PMB + 1 - n"2l   . (65) 
'ph   vv   o so    NR      o ) 

The nonlinear refractive index n2 can have a significant contribution to 

the phase velocity. 

The phase velocity can be controlled by introducing a small amount of 

background plasma. A transversely uniform background plasma will increase 

the phase velocity but have no effect on the focusing of the optical beam. 

By introducing a background plasma, the right-hand sides of Eqs. (63)-(65) 
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2   2       2 will be modified by the addition of the term k , /2k , where k , = 

9    2 4nq n./mc and n, is the background plasma density. The background plasma 

can be created by introducing a small concentration of easily ionized gas, 

i.e., a gas with a low ionization energy IL.. In addition, the background 

density can be tapered as a function of z to increase the phase velocity 

and optimize electron acceleration. 

2. Accelerating Gradient 

In the self-guided ICA, the accelerated electrons are acted on by both 

an axial accelerating E field as well as a transverse E„ field (for r t z r 
2 2 0). For an electron near the axis, r /r « 1, the field components 

5 

associated with the higher-order radially-polarized mode are given by Ez = 

- (2-f2/kr )E sinij/ and E = (-HTr/r )E costj/, where ^ = k£ + 9 is the phase, 

as given by Eqs. (44) and (45). For E > 0 the electron will experience 

axial acceleration within the phase regions sin\j/ > 0 and transverse 

focusing within the phase regions cos^ < 0.  Simultaneous acceleration and 

transverse focusing occurs for n/2 < ty +  2im < n, where n = 0,±1,±2,... 

The accelerating gradient EZQ = (•i2/n)(X/norso)Eo can be estimated by 

considering the case of a self-guided beam and assuming that the peak 

14    2 intensity is near the ionization intensity I,. (~ 10  W/cm ) and that the 

power is near the nonlinear focusing power, i.e., Ip <= Ij and P « P^. For 

1/2 1/2 
this case we find that EQ = (8neI]./cno)  , X/rg = (n/2)(enQn2I][)   and 

the accelerating gradient becomes 

1/9 1/9  1/9 
E  = (en0I,/2n )1/ZE„ = (2e/nft)(im9IT/c)

1/zIT
x/z,    (66) zo     2 I  o    o      o   Z I 1 
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which is a function of only n„ and I,.  For the equilibrium in Fig. 11, EZQ 

= 450 MeV. 

VI. Ionization and Collisional Losses 

In this section the attenuation length of the optical field due to 

electron collisions and ionization losses is obtained by solving the wave 

equation, Eq. (1), in the one-dimensional limit in the absence of the 

nonlinear polarization field P. Collisions and ionization losses enter the 

wave equation through the plasma current density J . 

In the presence of ionization and electron collisions, the equation 

for the plasma current density given by Eq. (5) is modified, 

3J /at = L2
/4JI)E - vJ. (67) ~p     { p      )~        m~p' 

where v is the effective electron collision frequency for momentum 
m 

transfer and is discussed in Appendix B.  Since the optical frequency is 

large compared to the collision frequency, w » vm, Eq. (67) can be 

approximated by. 

3J /3t = fw2/4n)fl - iv„,/» ]E, (68) 
~p     k p  M    m o;~' 

2 
where n ~ w is given by Eq. (9). 

Using the field representation in Eq. (6), the one-dimensional wave 

equation in the £,n, variables becomes 

2(ik + 3/3S)3E/3n = k2 [l - iWwjE, (69) 

where ck = m (O is the plasma frequency.  Since k « |3/3£| and \/<^0 « 

1, Eq. (69) can be approximated by 

|- E * -i(«o/c) (l - ivm/0)o + (ic/»0)3/3s) (5pE/2J,     (70) 
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where « = ck, w = w (£)/<*> is the normalized plasma frequency, and n = 1 o      p   p    o o 

has been assumed. Substituting E = Eoexp(ieQ) into Eq. (70), where EQ(^,n) 

and 9 (£,,n) are the real field amplitude and phase, we obtain 
o 

3E2/3n * - ra,n)E2, (71a) 

ae        -   9 
r-r = - k »„(«n/c) 3ti 2    p    o 

~2 
3« N 

i . n E (71b) 

where 

d = v w2 - c3u2/3£ - s- »23<>n(E2l/3S, <72> m p    p    / p  v. o; 

is the effective damping rate due to collisions and ionization. A similar 

result, i.e., Eq. (71), has been obtained in Ref. 30. 

~2 
In Eq. (72), the first term v w represents losses due to collisions. 

~2      ~2 
The second term - c3« /3£ = Woo n /n represents ionization losses due to 

p      p no p 

the fact that an electron produced by ionization in the presence of an 

optical field leaves behind a residual energy approximately equal to the 

oscillation energy e . The ionization loss term can also be derived by 
os 

2 
equating the rate of loss of electromagnetic energy -c3(Eo/8n)/3n. to the 

rate at which electrons are being produced -c3n /3£ = WnRo multiplied by 

2 2   2 
the average oscillation energy per electron eQg = q Eo/2m»o, which gives 

c3E2/3n = - Ww2(n /n )E . This expression for the ionization losses 
o        p no p o 

assumes that the oscillation energy is large compared to the electron 

ionization energy, e  > U,. The third term on the right-hand side of Eq. 
°*  os   i 

(72) represents the slippage of the optical beam envelope in the t,  = z-ct, 

ri = z frame since the group velocity v < c in the presence of the plasma. 
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Three-dimension effects can be approximated by introducing a filling 

factor f into Eq. (71a). The rate of decrease of optical beam power, due 

to collisions and ionization losses, is given by 

3P/3h = -P/Ld> (73> 

where 

L. = ck2/fv k2 + Vk2lf (74) d      \ m p n) 

is the attenuation length. In Eq. (74), W is the tunneling ionization 

9     9 1/9 7 2 1/2 
rate, k = (4nq n /mc T , kR = (4nq nn()/mc )  , f = cp/ffL « 1 is the 

filling factor, and a (o.)  is the transverse cross-sectional area of the 
19  -3 

generated plasma (laser). As an example, for nnQ = 2.7 x 10  cm  and 
i 12  —1 

n /n  = 10 , v = v  = 7 x 10 sec  as discussed in Appendix B. 
p no        m   en 

-2-1 3 -1 Assuming W/c a 10  cm , the attenuation distance is L^ = 10 f  cm. 

The actual frequency of the optical beam is w = - 3(k£ + 0Q)/3t = ck + 

c86 /3^. Using Eq. (71b) we find 

a>/co = 1 - ? 352/3^ - ?r 325V3^2. (75) 0      I      p     lo   p 

The third term on the right-hand side of Eq. (75) is typically small 
2 

compared to the second term. Furthermore, since 3» /3£ < 0, the frequency 

29-31 
will be upshifted as the optical beam propagates. 

VII. Discussion 

The propagation of both fundamental and higher-order Gaussian optical 

beams in gases undergoing ionization has been studied analytically and 

numerically. The propagation model includes the effects of the linear and 

nonlinear polarization current, the linear plasma current, and plasma 
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generation via tunneling ionization.  Envelope equations describing the 

evolution of the spot size, amplitude, and phase of the optical beam were 

derived by applying the source dependent expansion method to the paraxial 

wave equation in the r, t,  = z - ct/n , and h. = z coordinate system. The 

envelope equation for the evolution of the spot size r is given by Eq. s 

(29) for the fundamental Gaussian beam or Eq. (52) for the higher-order 

radially-polarized beam. The nonlinear focusing power for the high-order 

beam P.ro was found to be four times that of the fundamental Gaussian beam, 

i.e., PNR=4PNG = 2X
2/(,mon2). 

The evolution of an optical pulse with an initial power profile of the 

form P(0 = P sin2(n£/L) for -L < I <  0 with PQ > PN has been studied by 

numerically solving the envelope equation Eq. (29) (Eq. (52)), where P„ = 

PNr (Pvm) for the fundamental Gaussian (high-order radially-polarized) 

beam. The front portion of the optical beam where P < PN diffracts up to 

the point where P = PN. The point on the front of the optical beam where P 

= P„ remains guided, r = r . A narrow region of the pulse just behind 
IN 5     SO 

the position where P > P„ will focus. In the region where focusing occurs 

the intensity and the ionization rate increase, resulting in a sharp rise 

in the plasma density. _ The increase in plasma density causes the remainder 

of the pulse to diffract. This behavior is shown in Figs. 3, 4, and 12. 

Self-guided solutions, i.e., 3r /dX] =  0, can result from a balancing 

of diffraction, nonlinear self-focusing, and plasma defocusing. These 

solutions are characterized by beam profiles with P = P„ at the front (£ = 

0) of the beam, since the plasma density vanishes at the leading edge of 

the optical beam. As the plasma density increases behind the front of the 

beam (£ < 0), the power in the self-guided beam also increases such that P 
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> P„ and 3P/H < 0. For a typical self-guided solution the amount of 
N 

ionization is small, n /n  < 10" .  Examples of self-guided beam profiles 
p no — 

are shown in Figs. 5, 6, and 11. 

Self-guided optical beams are subject to an ionization-modulation (IM) 

instability. The mechanism of the IM instability can be understood by 

considering a perturbation of the spot size Sr for which the power is 

constant. For example, if the beam spot size is increased, i.e., Sr > 0, 

the beam intensity and ionization rate are reduced, resulting in less 

plasma generation. Nonlinear self-focusing and plasma defocusing are no 

longer balanced and the beam focuses. The focusing beam overshoots its 

equilibrium value, i.e., Sr < 0, some distance behind the front. When Sr < 

0, the intensity, ionization rate, and plasma density increase, causing the 

beam to defocus and again overshoot its equilibrium value. This focusing 

and defocusing of the beam due to a varying amount of ionization throughout 

the beam results in the IM instability. For a fundamental Gaussian beam, 

the asymptotic linear growth of the instability is given by Sr ~ exp[(l ± 

i43)Ne], where Ng * l%0*soWZRo>np(V/n
nol       ' 

as *iven ^ Ec*- <42)' 

The modulation amplitude increases with both the distance from the front of 

the beam, |£|, and the propagation distance n. = z. The IM instability 

leads to a disruption (erosion) of the back of the beam which moves toward 

the beam front at a relative velocity vd given by Eq. (43). Good agreement 

was obtained between numerical solutions of the full envelope equation for 

the IM instability in the linear regime and the analytical expressions for 

the asymptotic growth rates, as shown in Figs. 8 and 13. 

The results in Section III show that self-guiding of a Gaussian beam 

requires a nearly constant axial power profile with P = PNQ and a peak 

intensity near the ionization threshold, Ip - \>    Recent experiments on 
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the propagation of short (200 fs, X = 0.8 urn) laser pulses in air have been 

performed at the University of Michigan.   In these experiments, a large 

portion of the initial laser power was observed to be confined to a narrow 

spot size (~ 40 um) that propagated some 20 m in air at 1 atm. The 

14    2 
intensity in the narrow filament was on the order of 10  W/cm and partial 

ionization was observed along the propagation axis. The laser pulse was 

injected into air with a large spot size (-1 cm) and a peak power several 

times the nonlinear focusing power, P = 6 PN„ = 10 GW, where PN_ = 1.7 GW 

for air. These experimental conditions are far from the theoretical 

conditions for self-guiding a Gaussian beam, as found in Section III. Not 

only is the observed threshold for nonlinear focusing substantially higher 

than the calculated value, but a significant portion of the optical power 

is observed to reside in a large halo surrounding the central filament. 

This large radius (~ 1 cm) halo strongly affects the propagation dynamics. 

The present analysis does not directly apply to this experiment since the 

observed optical beam is apparently far from a Gaussian transverse profile. 

In addition, a self-guided inverse Cherenkov accelerator (ICA) has 

been proposed and analyzed. In this acceleration configuration a self- 

guided higher-order radially-polarized optical beam propagates through a 

gas. Associated with the high-order mode is an axial electric field 

component that is maximum along the axis and can be used to accelerate an 

injected electron beam. The phase velocity of the self-guided mode is less 

than the speed of light and can be controlled by introducing a uniform 

background plasma. Since the self-guided mode has a power near the 

nonlinear focusing power, P = P^, the amplitude of the axial electric 

1/2 
field can be written as E  = 9.6(n„/c)  I/n > where I is the peak 

optical beam intensity. Large values of the axial field amplitude, 
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typically on the order of 0.5 GV/m, require large values of n2 and I . 

Since n„ is proportional to the neutral gas density nnQ, the accelerating 

field can be increased by increasing nnQ. To avoid excessive amounts of 

plasma and defocusing, the peak intensity should be near the ionization 

threshold, I « IT. In the self-guided mode the propagation distance is 
P   I 

limited by the IM instability. Since the number of e-folds of the IM 
I/O 

instability scales as N - n  , where the plasma density n is a highly 

nonlinear function of I , the peak intensity must be kept sufficiently low. 
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Appendix A; Photo-Ionization Rates 

Photo-ionization can take place in either the tunneling or multi- 

photon regime. ~   These regimes are characterized by the Keldysh 

1/2 
parameter y.   = (Uj/e )  , where IL. is the ionization energy and EQg = 

(l/2)m(q|E|/mw) is the electron oscillation energy. The Keldysh parameter 

can also be written as y,   = «T , where T is the tunneling time, i.e., the 

transit time of the electron through the atomic Coulomb barrier. The low 

field limit (y,   > 1) corresponds to the multi-photon ionization regime, 

whereas the high field limit (y,   <  1) corresponds to the tunneling 

ionization regime. 

In the high field limit, y,   <  1, the ionization rate can be determined 

by a tunneling calculation for an atom in the presence of a static electric 

field of amplitude E. The tunneling ionization rate, i.e., the probability 

25 
(per unit time) of ionization, is given by 

V = 4ßo(UI)
5/2(EH/E)exp[- | (ÖJ^E^E], (Al) 

where the variables in Eq. (Al) have been normalized in terms of atomic 

16   —1 
constants. In Eq. (Al), Q   = cuc/a = 4.1 x 10  sec  is the 

^o   t      o 
2 

characteristic atomic frequency, af = 2nq /he = 1/137 is the fine structure 
o    7        0 

constant, afc is the characteristic atomic velocity, a = h /(4JI |q| m) = 

5.3 x 10  cm is the Bohr radius, Uj = Uj/Ug, Uj. is the ionization energy 

in eV, U„ = 13.6 eV is the ionization energy of hydrogen and EH = |q|/aQ = 

5.2 GV/cm is the hydrogenic electric field. The ionization rate in Eq. 

(Al) vanishes at both small and large values of the electric field, and has 

~ 3/2 
a maximum at E = 2.3 (IL.)  Eg. 

In the limit y,   « 1, the tunneling time is much less than the laser 

period, T « w , and therefore, Eq. (Al) describes the instantaneous 
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ionization rate in the laser field. For a circularly polarized laser field 

of the form E = |E|(cos(kz - wt)ex + sin(kz - «t)eyJ, where |E| is 

constant, the ionization rate is obtained by setting E = ||| in Eq. (Al). 

For a linearly polarized laser field of the form E = |E_|cos(kz - wt)ex? the 

average ionization rate is obtained by averaging Eq. (Al) over a laser 

oscillation period. The average ionization rate for a linearly or radially 

polarized laser field is found to be given by 

V = 4(3/R)1/2Bo(0I)
7/4(EH/|E|)

1/2exp[- | (Cfj)3'2^/|||]. (A2) 

When Yu > 1» ionization occurs by a multi-photon process. In this 
K. 

case N photons are required to increase the electron energy by the 
o 

ionization energy UT. For an electron ionized from the ground state to the 

continuum, the ionization rate can be approximated by 

7/9      "2No 
V « A« N3/2^)  °, (A3) 

where A is a constant on the order of unity and NQ is the smallest whole 

number for which N h«/2n = UT, i.e., N is the number of photons required 
o       l       o 

for ionization. 
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Appendix B: Electron Collision Frequency 

As the electrons in the weakly ionized gas or plasma oscillate under 

the influence of the optical field, they collide with the background 

electrons, ions and neutral atoms. The electron collision frequency for 

momentum transfer is 

v = v . + v , (Bl) 
m   ei   en' 

where v . (v ) is the electron-ion (electron-neutral) collision frequency, 
ei v en7 

The electron-electron collision frequency does not contribute to vm because 

the momentum of any pair of colliding electrons and associated current 

(masses and charges are identical) are conserved. Electrons colliding with 

electrons will therefore be accelerated on average as if the collision 

frequency were zero. Electron-electron collisions, however, lead to 

thermalization of the electrons. 

The electron-ion collision frequency is given by 

v .  = 4 x 10~6«.nA .n.Z2e ~3/2[eV], (B2) 
ei ei l  os 

where tnA . is the Coulomb logarithm, (typically, inA . a 10-20), Z is the 
ei ei 

ion charge state, n. is the ion density, n.Z is the electron plasma density 

and e  is the electron oscillation energy in units of eV. 
os 

33-35 
The electron-neutral collision frequency is given by 

v  = <v n a    (v )>, (B3) 
en    en env e' ' 

where a      is the electron-neutral cross-section, v is the electron 
en e 

velocity and the brackets < > denote an averaging over the electron 

velocity distribution. The electron-neutral cross-section is generally a 

complicated function of the electron velocity. At low electron velocities 

the cross-section is hard-sphere-like and independent of velocity, aa a_ 
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— 1 'S   — ^ where a    ~ 10   cm  is the hard-sphere cross-section. As the electron 
o 

velocity approaches the characteristic atomic electron velocity, 

polarization scattering is the dominant process and agn a l/vg. The 

characteristic atomic electron velocity is VQ = <xfc where af = 1/137 is the 

2 
fine structure constant and the characteristic electron energy mvQ/2 is 

13.6 eV. At substantially higher electron velocities the scattering 

becomes Coulomb-like and a      ~ 1/v . The electron-neutral collision 
en    e 

frequency can therefore be estimated to be vgn = 
n
n
ff

0
v
os 

for vos 
< vo and 

\>  = n a v for v  > v , where v  is the electron oscillation velocity, 
en   n o o    os   o       os 

Typically, the electron-neutral collisions is the dominant collisional 

process in weakly ionized gases. As an example, consider the case where 

19  —3 
the neutral density is n  = 3 x 10  cm  and the electron oscillation 

no 
_o 9 

velocity is v  = qE /mw = 5 x 10 c (e  = mv /2 = 6.3 eV).  For a 
OS      O OS      OS 

linearly polarized laser of wavelength X = 1 um, these parameters 

13    2 
correspond to a peak intensity of I = 3.5 x 10  W/cm and peak electric 

field amplitude of E = 1.6 x 108 V/cm. Taking a = 10"15 cm2, Eq. (B2) 
o o 

12   -1 
yields an electron-neutral collision frequency of vgn « 7 x 10  sec , 

i.e., an electron-neutral collision time of T  = vgn ~ 140 fsec. 
_3 

If for the same example, the gas is weakly ionized with ni  = 10 nnQ = 

3 x 1016 cm  and the electron oscillation energy is eQS =6.3 eV, the 

electron-ion collision frequency from Eq. (B2) for singularly ionized gas 

(Z = 1) is v . =• 8 x 10  sec , i.e., an electron-ion collision time of v ei 

T . = v"^ =■ 13 psec. For these parameters the electron-neutral collision 
ei   ei     r 

frequency is much greater than the electron-ion collision frequency, vgn » 

v .. 
ei 

As another example consider the case of a plasma in which all the 

atoms are singly ionized, i.e., Z = 1 and n. = nnQ is the initial neutral 
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18    2 
density. For a laser intensity of I = 10  W/cm and wavelength X = 1 urn, 

the oscillation energy is eQs =0.2 MeV. For a neutral density of nnQ = 

1019 cm, the electron-ion collision frequency is vgi = 4 x 10 

-1 -1 
sec  and x  .  = v . = 250 nsec. 

ei   ei 
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Appendix C: Radiative and Collisional Losses on Accelerated Electrons 

In an inverse Cherenkov or a laser-plasma accelerator, the accelerated 

electrons interact with both the background electrons and nuclei. This 

interaction results in a loss of electron beam energy as well as an 

increase in beam emittance. Accelerated electrons traveling through 

neutral gas or plasma are scattered by the atomic nuclei and emit 

bremsstrahlung. The emission of bremsstrahlung represents a loss in 

electron energy. In addition, a highly relativistic electron will lose 

energy due to collisions with atomic or plasma electrons. 

The rate of change of energy of the accelerated electrons is given by 

dWe/dz = Gacc - Grad - Gcol, (Cl) 

where W = (Y - l)mc is the electron energy, Go„„ = qE denotes the 
Q cLCC       Z 

accelerating gradient and G  . (G ,) denotes the radiative (collisional) 

energy loss. The rate of electron energy loss due to bremsstrahlung is ' 

G  . * - V /L.t (C2) 
rad    e b' 

where 

_1 
Lb = ((16/3)afnazVfcnA)  , (C3) 

is the radiation damping length. In Eq. (C3), n is the density of nuclei, 

Z is the atomic number, a. = 2nq /he = 1/137 is the fine structure 
a r 

constant, r = q2/mc2 = 2.8 x 10"13 cm is the classical electron radius and 
e 

A is a function of the maximum and minimum impact parameters. The choice 

of A depends on various factors, such as the electron energy range and 

electronic screening effects.  For highly relativistic energies, Wg » W"c, 

-1/3 
where complete screening occurs, A = 233 Z&       . At lower energies, Wg « 
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W , where screening can be neglected, A = y- The critical energy W 

-1/3 2 
defining these regimes is W = 192 Z   mc and typically CnA -5-10. In 

19  -3 
hydrogen (Z = 1) at 1 atm (n = 5.4 x 10  cm ) the radiation damping 

length is L, = 12 km, where we have taken <lnA = 5. 

For a highly relativistic electron, the energy loss due to collisions 

47 48 
with atomic or plasma electrons is given by the Bethe formula,  ' . 

G , = 4nn r2mc2inB, (C4) 
col    e e 

where n = n Z is the total electron density and B is the ratio of the 
e   a a 

maximum to minimum impact parameter. The ratio of radiative energy loss 

Eq. (C2) to collisional energy loss (C4) is 

Grad
/Gcol = ^fs = 1-4*10"3VHeVl- <C5> 

For an electron traveling through hydrogen (Z = 1) gas or plasma the 

radiative energy loss term is larger than the collision loss for energies 

above 700 MeV. 

In addition, accelerated electrons will undergo small angle scattering 

off nuclei, which leads to an increase in the electron beam emittance. The 

2 1/2 
normalized emittance of the electron beam is given by e = yR<6 >  > where 

2 1/2 R is the rms beam radius and <6 >   is the rms divergence angle of the 

beam. The rate of growth in the mean square angle is given by 

d<62>/dz = 16nZ (Z + l)n rV2enA, (C6) 
a a    a e 

J L      ,.  . . j.    48,49 and the normalized emittance e increases according to 

de2 

-r-£ = Y2R2d<62>/dz = R2/L , (C7) 
dz s 
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where L_1 = 16nZ (Z + l)n r^tnA.  For hydrogen at 1 atm (Z&  = 1, na = 
S 3  3       3 c 

5.4 x 1019 cm-3, and «.nA = 5), L = 470 cm. 
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Appendix D:  Inverse Cherenkov Acceleration vith Bessel (Axicon) Beams 

In addition to the higher-order Gaussian optical beam discussed in 

Sec. IV, an inverse Cherenkov accelerator (ICA) could be driven by a first 

7 8 
order Bessel optical beam. '  Both optical beams are axially-symmetric, 

radially-polarized and have an axial field peaked along the z-axis. 

Nonideal Bessel beams (finite in transverse extent) can be formed using 

38 39 axicon mirrors.  '   Both the nonideal Bessel beam and the higher-order 

Gaussian beam diffract, limiting the acceleration distance. For a fixed 

total optical beam power, however, the energy gain in an ICA can be 

substantially higher when driven by a Bessel optical beam as opposed to a 

higher-order Gaussian optical beam. Nonlinear self-focusing in the gas and 

the effects of ionization are neglected in the following. 

The wave equation in the paraxial approximation for a radially- 

polarized, axially-symmetric field E propagating in a medium with linear 

refractive index n is o 

32        1  3 -2      ,.. (3        1  3 ^ 
7T+?3F-r     + 2lkfe+ v ätj vor 

Er = 0, (Dl) 

where E = E (r,z,t)e1'  wtV2 + c.c, E is slowly varying in z and t 

-1     -1 
compared with k  and » , v = c/n , k = w/v, w = 2nc/X is the frequency 

and X is the vacuum wavelength. An exact solution to Eq. (Dl) which 

maintains a constant transverse profile is 

Er = E0
J
1(
k
1
r>exp(i(k " Ak)z " wt) + c,c-> (D2> 

where J, is the Bessel function of the first kind of order unity, Ak = 

k|/2k, k. is the transverse wavenumber and E is the radial field 

amplitude.  The ideal Bessel field in Eq. (D2) (infinite in transverse 

50 
extent) is nondiffracting  in the sense that the transverse profile 
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remains constant. The power, however, contained within an ideal Bessel 

beam is infinite since JdrJ^k, r)r = » when integrated from r = 0 to r = ». 

Associated with the radially-polarized field in Eq. (D2) is the axial field 

ik.E , -s 
Ez = (k _ °m  Jo(k1r)exp[i(k - Ak)z - cotj + c.c.      <D3) 

The axial accelerating field in Eq. (D3) is peaked along the z-axis and has 

axial phase velocity v , = w/(k - Ak), 

v h = vfl + (k1v/w)
2/2J, (D4) 

9 
which can be less than c for n > 1 + (k.c/tt) /2, where it is assumed that 

(k±c/w)2 « 1. 

The ideal Bessel beam consists of an infinite number of rings (lobes) 

extending radially to infinity and having a radial width of rQ = n/k^. 

Since the asymptotic form (k.r » 1) for the Bessel function is J^k^r) ~ 

(2/nk.r)  cos(k.r - 3n/4), the power in each ring is essentially the same. 

If the power in each ring is denoted by P , then the total power contained 

in a nonideal Bessel beam of a finite radial extent Rm&x is P = NPQ, where 

N = R  /r is the number of rings.  In principle, the number of rings can 
max o 

be large, N » 1. A nonideal Bessel beam consisting of N rings diffracts 

51 
away sequentially starting with the outermost ring.   The outermost ring 

2 
diffracts after a distance ~ nrQ/X, the next ring diffracts after a 

distance 2itr /X, and so on until the innermost ring diffracts away after a 

distance ~ Nur /X. Hence, the maximum propagation distance of a nonideal 
o 

Bessel beam consisting of N rings of width rQ  is 

L   * NZp . <D5) 
max    Ro 
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where ZD = nr /X is the Rayleigh length associated with the individual 
KO     O 

rings, assuming n = 1. 

The maximum energy gain in the ICA driven by a nonideal Bessel beam is 

V = -qE L  , (D6) 
max   H  zo max' 

assuming that the axial phase velocity is matched to the electron velocity, 

where E  = (k,/k)E is the axial accelerating field along the z-axis given 
zo    1   o 

by Eq.  (D3). The radial field amplitude in terms of the power within a 

ring is 

1 /9 
E « (2n/r )(P /en )  . (D7) 
0 O   O   0 

Using Eqs. (D5) and (D7), the maximum energy gain from Eq. (D6), in terms 

1/2 1/2 2     1/2 
of the total optical power, is w"max = CQN  P  , where CQ = -qn /(cnQ) 

In practical units, 

V (MeV) = 1.7 N1/2[P(GW)]1/2, (D8) 
maxv  ' 

for an ICA driven by a nonideal Bessel beam. If a higher-order Gaussian 

optical beam of the same total power P were used instead of the nonideal 

Bessel beam, the maximum energy gain, Eq. (62), would be wmax(
MeV) = 

1 /9 1/2 
2.3[P(GW)]  . The energy gain in the ICA is - N   times greater for a 

nonideal Bessel beam as compared to a higher-order Gaussian beam of the 

same total power. 

The ratio of the accelerating gradient for the nonideal Bessel beam, 

E R, to that of the higher-order Gaussian beam, EzG, is EzB
/E
zG ~ 

N"1/2(r /r )2, where r  is the spot size for the higher-order Gaussian v so o        so 

beam. 
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